Copied to
clipboard

G = C42.50C23order 128 = 27

50th non-split extension by C42 of C23 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.50C23, C4.602+ 1+4, C89D417C2, C4⋊C4.367D4, D4.Q836C2, C42Q1639C2, D46D4.7C2, (C2×D4).171D4, C8.D425C2, C22⋊C4.50D4, C2.50(Q8○D8), D4.25(C4○D4), D4.7D445C2, C8.18D440C2, C4⋊C8.103C22, C4⋊C4.410C23, (C2×C4).507C24, (C2×C8).189C23, C23.325(C2×D4), C4⋊Q8.151C22, SD16⋊C436C2, C2.D8.60C22, C8⋊C4.44C22, C4.Q8.57C22, (C4×D4).160C22, (C2×D4).424C23, C22⋊C8.81C22, (C2×Q8).220C23, (C2×Q16).38C22, (C4×Q8).158C22, C2.143(D45D4), C22⋊Q8.82C22, C23.36D418C2, C23.24D419C2, C23.48D427C2, C23.20D435C2, (C22×C8).310C22, Q8⋊C4.71C22, (C2×SD16).57C22, C22.767(C22×D4), C42.C2.40C22, D4⋊C4.168C22, C2.86(D8⋊C22), C22.46C244C2, (C22×C4).1151C23, C42.30C2210C2, C42⋊C2.190C22, (C2×M4(2)).114C22, C4.232(C2×C4○D4), (C2×C4).604(C2×D4), (C2×C4⋊C4).668C22, (C2×C4○D4).211C22, SmallGroup(128,2047)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.50C23
C1C2C4C2×C4C22×C4C2×C4○D4D46D4 — C42.50C23
C1C2C2×C4 — C42.50C23
C1C22C4×D4 — C42.50C23
C1C2C2C2×C4 — C42.50C23

Generators and relations for C42.50C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=a2, ab=ba, cac-1=eae=a-1b2, dad=ab2, cbc-1=dbd=b-1, be=eb, dcd=bc, ece=a2b2c, ede=b2d >

Subgroups: 360 in 191 conjugacy classes, 86 normal (84 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C8⋊C4, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C42.C2, C42.C2, C422C2, C4⋊Q8, C22×C8, C2×M4(2), C2×SD16, C2×Q16, C2×C4○D4, C23.24D4, C23.36D4, C89D4, SD16⋊C4, D4.7D4, C42Q16, C8.18D4, C8.D4, D4.Q8, C23.48D4, C23.20D4, C42.30C22, D46D4, C22.46C24, C42.50C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, D45D4, D8⋊C22, Q8○D8, C42.50C23

Character table of C42.50C23

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O8A8B8C8D8E8F
 size 11114444222244444888888444488
ρ111111111111111111111111111111    trivial
ρ21111-1-1-1-111-1-1111-111-11-1-111-11-11-1    linear of order 2
ρ31111-111-111111111111-1-11-1-1-1-1-1-1-1    linear of order 2
ρ411111-1-1111-1-1111-111-1-11-1-1-11-11-11    linear of order 2
ρ51111-111-11111-11-111-1-1-1-1-1-1111111    linear of order 2
ρ611111-1-1111-1-1-11-1-11-11-111-11-11-11-1    linear of order 2
ρ7111111111111-11-111-1-111-11-1-1-1-1-1-1    linear of order 2
ρ81111-1-1-1-111-1-1-11-1-11-111-111-11-11-11    linear of order 2
ρ91111-1-11-11111-1-1-1-1-11111-1-11111-1-1    linear of order 2
ρ10111111-1111-1-1-1-1-11-11-11-11-11-11-1-11    linear of order 2
ρ1111111-1111111-1-1-1-1-111-1-1-11-1-1-1-111    linear of order 2
ρ121111-11-1-111-1-1-1-1-11-11-1-1111-11-111-1    linear of order 2
ρ1311111-11111111-11-1-1-1-1-1-1111111-1-1    linear of order 2
ρ141111-11-1-111-1-11-111-1-11-11-111-11-1-11    linear of order 2
ρ151111-1-11-111111-11-1-1-1-1111-1-1-1-1-111    linear of order 2
ρ16111111-1111-1-11-111-1-111-1-1-1-11-111-1    linear of order 2
ρ1722220220-2-2-2-20-20-22000000000000    orthogonal lifted from D4
ρ1822220-2-20-2-2220-2022000000000000    orthogonal lifted from D4
ρ1922220-220-2-2-2-20202-2000000000000    orthogonal lifted from D4
ρ20222202-20-2-222020-2-2000000000000    orthogonal lifted from D4
ρ212-22-2-20022-2002i0-2i000000000-2i02i00    complex lifted from C4○D4
ρ222-22-2200-22-2002i0-2i0000000002i0-2i00    complex lifted from C4○D4
ρ232-22-2-20022-200-2i02i0000000002i0-2i00    complex lifted from C4○D4
ρ242-22-2200-22-200-2i02i000000000-2i02i00    complex lifted from C4○D4
ρ254-44-40000-440000000000000000000    orthogonal lifted from 2+ 1+4
ρ2644-4-40000000000000000000220-22000    symplectic lifted from Q8○D8, Schur index 2
ρ2744-4-40000000000000000000-22022000    symplectic lifted from Q8○D8, Schur index 2
ρ284-4-440000004i-4i00000000000000000    complex lifted from D8⋊C22
ρ294-4-44000000-4i4i00000000000000000    complex lifted from D8⋊C22

Smallest permutation representation of C42.50C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 45 18 42)(2 46 19 43)(3 47 20 44)(4 48 17 41)(5 33 61 39)(6 34 62 40)(7 35 63 37)(8 36 64 38)(9 21 13 50)(10 22 14 51)(11 23 15 52)(12 24 16 49)(25 56 32 58)(26 53 29 59)(27 54 30 60)(28 55 31 57)
(1 59 3 57)(2 56 4 54)(5 23 7 21)(6 51 8 49)(9 33 11 35)(10 38 12 40)(13 39 15 37)(14 36 16 34)(17 60 19 58)(18 53 20 55)(22 64 24 62)(25 48 27 46)(26 44 28 42)(29 47 31 45)(30 43 32 41)(50 61 52 63)
(1 3)(2 17)(4 19)(5 35)(6 38)(7 33)(8 40)(9 11)(10 16)(12 14)(13 15)(18 20)(21 52)(22 24)(23 50)(25 60)(26 55)(27 58)(28 53)(29 57)(30 56)(31 59)(32 54)(34 64)(36 62)(37 61)(39 63)(41 43)(42 47)(44 45)(46 48)(49 51)
(1 12)(2 15)(3 10)(4 13)(5 25)(6 31)(7 27)(8 29)(9 17)(11 19)(14 20)(16 18)(21 41)(22 47)(23 43)(24 45)(26 64)(28 62)(30 63)(32 61)(33 56)(34 57)(35 54)(36 59)(37 60)(38 53)(39 58)(40 55)(42 49)(44 51)(46 52)(48 50)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,18,42)(2,46,19,43)(3,47,20,44)(4,48,17,41)(5,33,61,39)(6,34,62,40)(7,35,63,37)(8,36,64,38)(9,21,13,50)(10,22,14,51)(11,23,15,52)(12,24,16,49)(25,56,32,58)(26,53,29,59)(27,54,30,60)(28,55,31,57), (1,59,3,57)(2,56,4,54)(5,23,7,21)(6,51,8,49)(9,33,11,35)(10,38,12,40)(13,39,15,37)(14,36,16,34)(17,60,19,58)(18,53,20,55)(22,64,24,62)(25,48,27,46)(26,44,28,42)(29,47,31,45)(30,43,32,41)(50,61,52,63), (1,3)(2,17)(4,19)(5,35)(6,38)(7,33)(8,40)(9,11)(10,16)(12,14)(13,15)(18,20)(21,52)(22,24)(23,50)(25,60)(26,55)(27,58)(28,53)(29,57)(30,56)(31,59)(32,54)(34,64)(36,62)(37,61)(39,63)(41,43)(42,47)(44,45)(46,48)(49,51), (1,12)(2,15)(3,10)(4,13)(5,25)(6,31)(7,27)(8,29)(9,17)(11,19)(14,20)(16,18)(21,41)(22,47)(23,43)(24,45)(26,64)(28,62)(30,63)(32,61)(33,56)(34,57)(35,54)(36,59)(37,60)(38,53)(39,58)(40,55)(42,49)(44,51)(46,52)(48,50)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,18,42)(2,46,19,43)(3,47,20,44)(4,48,17,41)(5,33,61,39)(6,34,62,40)(7,35,63,37)(8,36,64,38)(9,21,13,50)(10,22,14,51)(11,23,15,52)(12,24,16,49)(25,56,32,58)(26,53,29,59)(27,54,30,60)(28,55,31,57), (1,59,3,57)(2,56,4,54)(5,23,7,21)(6,51,8,49)(9,33,11,35)(10,38,12,40)(13,39,15,37)(14,36,16,34)(17,60,19,58)(18,53,20,55)(22,64,24,62)(25,48,27,46)(26,44,28,42)(29,47,31,45)(30,43,32,41)(50,61,52,63), (1,3)(2,17)(4,19)(5,35)(6,38)(7,33)(8,40)(9,11)(10,16)(12,14)(13,15)(18,20)(21,52)(22,24)(23,50)(25,60)(26,55)(27,58)(28,53)(29,57)(30,56)(31,59)(32,54)(34,64)(36,62)(37,61)(39,63)(41,43)(42,47)(44,45)(46,48)(49,51), (1,12)(2,15)(3,10)(4,13)(5,25)(6,31)(7,27)(8,29)(9,17)(11,19)(14,20)(16,18)(21,41)(22,47)(23,43)(24,45)(26,64)(28,62)(30,63)(32,61)(33,56)(34,57)(35,54)(36,59)(37,60)(38,53)(39,58)(40,55)(42,49)(44,51)(46,52)(48,50) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,45,18,42),(2,46,19,43),(3,47,20,44),(4,48,17,41),(5,33,61,39),(6,34,62,40),(7,35,63,37),(8,36,64,38),(9,21,13,50),(10,22,14,51),(11,23,15,52),(12,24,16,49),(25,56,32,58),(26,53,29,59),(27,54,30,60),(28,55,31,57)], [(1,59,3,57),(2,56,4,54),(5,23,7,21),(6,51,8,49),(9,33,11,35),(10,38,12,40),(13,39,15,37),(14,36,16,34),(17,60,19,58),(18,53,20,55),(22,64,24,62),(25,48,27,46),(26,44,28,42),(29,47,31,45),(30,43,32,41),(50,61,52,63)], [(1,3),(2,17),(4,19),(5,35),(6,38),(7,33),(8,40),(9,11),(10,16),(12,14),(13,15),(18,20),(21,52),(22,24),(23,50),(25,60),(26,55),(27,58),(28,53),(29,57),(30,56),(31,59),(32,54),(34,64),(36,62),(37,61),(39,63),(41,43),(42,47),(44,45),(46,48),(49,51)], [(1,12),(2,15),(3,10),(4,13),(5,25),(6,31),(7,27),(8,29),(9,17),(11,19),(14,20),(16,18),(21,41),(22,47),(23,43),(24,45),(26,64),(28,62),(30,63),(32,61),(33,56),(34,57),(35,54),(36,59),(37,60),(38,53),(39,58),(40,55),(42,49),(44,51),(46,52),(48,50)]])

Matrix representation of C42.50C23 in GL8(𝔽17)

130000000
94000000
20400000
16013130000
00005057
0000120120
000012101210
00005500
,
160000000
016000000
001600000
000160000
00000100
000016000
0000116115
000010116
,
013100000
0130150000
161090000
00040000
000014300
00003300
0000314011
0000140140
,
160000000
016000000
09100000
04010000
00001000
000001600
00000010
000010116
,
134000000
94000000
216480000
16013130000
00005757
000050120
00005057
0000512107

G:=sub<GL(8,GF(17))| [13,9,2,16,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,13,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,5,12,12,5,0,0,0,0,0,0,10,5,0,0,0,0,5,12,12,0,0,0,0,0,7,0,10,0],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,16,1,1,0,0,0,0,1,0,16,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,15,16],[0,0,16,0,0,0,0,0,13,13,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,15,9,4,0,0,0,0,0,0,0,0,14,3,3,14,0,0,0,0,3,3,14,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,11,0],[16,0,0,0,0,0,0,0,0,16,9,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,16],[13,9,2,16,0,0,0,0,4,4,16,0,0,0,0,0,0,0,4,13,0,0,0,0,0,0,8,13,0,0,0,0,0,0,0,0,5,5,5,5,0,0,0,0,7,0,0,12,0,0,0,0,5,12,5,10,0,0,0,0,7,0,7,7] >;

C42.50C23 in GAP, Magma, Sage, TeX

C_4^2._{50}C_2^3
% in TeX

G:=Group("C4^2.50C2^3");
// GroupNames label

G:=SmallGroup(128,2047);
// by ID

G=gap.SmallGroup(128,2047);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,560,253,758,723,346,248,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=a^2,a*b=b*a,c*a*c^-1=e*a*e=a^-1*b^2,d*a*d=a*b^2,c*b*c^-1=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,e*c*e=a^2*b^2*c,e*d*e=b^2*d>;
// generators/relations

Export

Character table of C42.50C23 in TeX

׿
×
𝔽